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1. In his book, Ref [1], J. L. Walsh gives the following result:

Let T be a compact subset of the complex plane andf(z) a complex-valued
function defined on T with the property that for every E > 0 there exists a
polynomial p(z) such that Ip(z) - f(z)j < E for all z E T. Then for any
positive n, any n distinct points Zi E T (1 ~ i ~ n), and any E > 0, there exists
a polynomial q(z) such that Ifez) - q(z)j < E for all Z E T and q(Zi) = f(zi),
i = 1,2'0'" n (i.e., iff can be approximated uniformly by polynomials, it can
be approximated so by polynomials which interpolate f at n distinct points).

If, in this theorem, T is chosen to be a compact interval of the real line
and f(x) is a continuous real-valued function defined on T, then Walsh's
theorem represents a strengthening of the classical Weierstrass approximation
theorem. (An additional argument is needed to ensure that the polynomials
can be chosen to be real.)

The following theorem, essentially due to W. Wolibner [3] (cf. Ref. [2]),
shows that the approximating polynomials of 'the strengthened Weierstrass
theorem can be chosen to satisfy still another condition.

Let J(x) be a continuous real-valued function defined on a nondegenerate
compact real interval T. Thenfor any positive integer n, any n distinct points ti
(1 ~ i ~ n) belonging to T, and any E > 0, there exists a polynomial pet)
such that IJ(t) - p(t)1 < E, t E T, p(ti) = J(ti) (1 ~ i ~ n), and

max Ip(t)1 = max If(t)j.
tET tET

In Ref. [4], H. Yamabe gave the following abstract version of Walsh's
theorem.

Let D be a dense convex subset of a real normed linear space X and let
Xi* (1 ~ i ~ n) belong to the dual space. Thenfor every x E X and every E > 0
there exists dE D such that x;*(d) = x;*(x) (1 ~ i ~ n) and II x - d \I < E.

* The work of this author was supported in part by N.S.F. Grant No. GU 2605.
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In Ref. [5], I. Singer gave a slightly more general version of Yamabe's
theorem:

Let D be a dense convex subset of a real topological vector space X and let
Xi* (1 ~ i ~ n) belong to the dual space. Then for every x E X and every
neighborhood N(x) of x, there exists dE N(x) n D such that xi*(d) = Xi*(X)
(1 ~ i ~ n).

In Ref. [6], F. Deutsch proved Singer's theorem under the hypothesis that
D is a dense subspace of the (possibly) complex topological vector space X.

Finally, in Ref. [2], Deutsch and Morris, while generalizing the work
of Wolibner, investigated the problem of approximating an arbitrary point
of a real normed linear space X by a point d of a dense subspace D C X,
with the side conditions II d II = II x II and xi*(d) = Xi*(X) (1 ~ i ~ n), where
the x;* (1 ~ i ~ n) belong to the dual space of X. They considered the cases:
X a Hilbert space, X a reflexive Banach space, X = C[T], where T is a
compact Hausdorff space, and X an L p space, I < p < 00. In the present
note we prove a theorem which resulted from an attempt to extend the
work on this problem by allowing D to be an arbitrary dense convex subset
of X.

Following Ref. [2], we make the following

DEFINITION. Let D and Y be subsets of a normed linear space X, and let
Xi* (i = 1,2,... , n) belong to the dual space X*. The triple (Y, D, {Xl *, ... , Xn *})
is said to have property SAIN (simultaneous approximation and interpolation
with norm preserved) if, for every y E Yand every E > 0, there exists dE D
such that II dll = II y II, xi*(d) = Xi*(Y) (i = 1,2,... , n) and II y - dll < E.

Let X be a normed linear space and let Xl *,..., Xn* be points of X*. If X E X,
we define the interpolation set of x, Sx, relative to Xl *, ... , Xn *, by

Sx = {y E X I Xi*(Y) = xi*(x) (i = 1,... , n)}.

We call y E Sx minimal if and only if for each Z E Sx , II Y II ~ II Z II. We define
also

Tx = {y E Sx I y is minimal}.

We can now state our principal result.

THEOREM 1.1 Let M be a dense convex subset of the real normed linear
space X, and let Xl *,... , Xn * E X*. Then (X, M, {Xl *, ... , Xn *}) has property
SAIN if and only if (Tx , M, {Xl *,... , Xn *}) does, for each X E X.

1 We are indebted to the referee for his comment that Theorem 1 and the following
results are also valid in complex spaces. This follows from the fact that Yamabe's theorem
continues to hold in complex spaces, as was shown in Ref. [7, pp. 356-357].
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Proof Necessity of the condition is obvious. To show sufficiency, we
must prove that, for each x EO X and each E > 0, there exists an m EO M n S" ,
with II x II = II m II and II x - mil < E. To find such an m, we first assume
that x if: T" and look for m l , m2 EO M n S" such that II ml II < II x II < II m 2 11

and II x - mi II < E (i = 1,2); having found such, the convexity of M n S"
will be seen to yield the desired m. Since x f/' Tx , there exists y EO Sx such that
II x II > II y II. The function g(A) = II A(2x - y) + (1 - A)y II is convex on
[0, 1], and since g(O) < g(1/2) < g(1), it is strictly monotone increasing in a
neighborhood of 112. The convexity of S" implies that

A(2x - y) + (1 - A)y EO S"

for ,.\ EO [0, 1]. The continuity and strict monotonicity of g in a neighborhood
of 1/2 insure the existence of Al , A2 (0 ~ Al < 1/2 < A2 ~ 1) such that if

then

and

Zi = Ai(2x - y) + (1 - Ai)y (i = 1,2),

II x - Zi II < E/2 (i = 1,2).

By Yamabe's theorem we can find mi EO M n S" such that II Zi - mi II < E'/2
(i = 1,2), where E' = minCE, II Z2 II - II x II, II x II - II Zl II). Thus,
II mIll < II x II < II m2 11 and II x - mi II < E (i = 1,2). Define the vector
valued function h(A) = AmI + (1 - A) m2 , A EO [0, 1]. The continutiy of the
norm insures the existence of A3 EO [0, 1] such that II h(A3) II = II x II. Observe
that II x - h(A3)11 ~ A3 11 x - ml II + (1 - A3)llx - m2 11 < E. Thus, we may
may take m = h(A3).

If we now assume that x EO T", then, by hypothesis, there exists an
m EO M n T" C T" C S" satisfying II m - x II < E. We have proved that
whether or not x EO T", we can always find an m EO M n S" such that
II x - mil < E and II x II = II m II, i.e., <X, M, {Xl *,... , X n *}> has property
SAIN.

COROLLARY. Let X be a strictly convex real normed linear space, and let M
be a dense convex subset of X.if Xl *,... , X n * EO X*, then <X, M, {Xl *,... , X n *}>
has property SAIN ifand only if M contains each minimal point.

Proof Because the norm is strictly convex, each T" consists of at most
one point.

In a Hilbert space X with inner product ( , ), any x* EO x* uniquely
determines an x EO X such that for each y EO X, x*(y) = (x, y). We call x
the Riesz representation of x*.
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THEOREM 2. Let M be a dense convex subset of the real Hilbert space X
and let Xl *,... , Xn * be elements of X*. If Xl"'" Xn are, respectively, the Riesz
representation of Xl *,... , Xn*, then <X, M, {Xl *, ... , Xn *}) has property SAIN
if and only if M contains <Xl'"'' Xn), the subspace spanned by Xl"'" Xn •

Proof. Without loss of generality we may assume that Xl'"'' Xn are
orthonormal. Since Hilbert spaces are strictly convex, we need only prove
that UXEX Tx coincides with <Xl"'" x n ). Each X E X may be written in the
form X = L;~l (x, Xi) Xi + x..L, (where (xl-, Xi) = °(i = 1,2,... , n). Further y
belongs to Sx if and only if (x, x;) = (y, Xi) (i = 1,2,... , n); hence, if and
only if y = L;~l (x, Xi) Xi + y..L. Since II y 11 2 = L~~l I(x, xi)1 2 + [I y..L 11 2, it
follows that y E Tx if and only if II y..L II = 0, i.e., if and only if y =

L~=l (x, Xi) Xi .

COROLLARY (Deutsch and Morris). Let M be a dense subspace of the
Hilbert Space X and let Xl *, ... , Xn * be elements ofX*. Then

<X, M, {XI*,,,., Xn *})

has property SAIN if and only if each Xi* attains its norm on the intersection
of the unit ball with M.

Proof. Because a Hilbert space is strictly convex, each nonzero Xi *
assumes its norm at exactly one point of the unit sphere, viz., Yi = xi/II Xi II.
Hence, the desired conclusion.

J. D. Stafney [8] has shown the following

THEOREM. Let w(m) be a positive number for m = 0, 1,... , such that
limm->oo w(m)l/m = 00. Given fE qo, 1], with f(O) = 0, and a positive
number E, there exists a polynomial P(x) = L cmxmsuch that If(x) - P(X) I < E

throughout [0, 1], and I Cm I < E • w(m) for m = 0, 1,.... (qo, 1] denotes the
linear space of all continuous real-valued functions on °::( X ::( 1, with the
maximum norm.)

As a matter of fact, Co may be taken to be 0. Let M be the set of all poly
nomials Lm~l cmxm with I Cm I < w(m). This set is convex and Stafney's
theorem says that M is dense in the subspace Cora, 1J of C[O, 1J, consisting
of the functions which vanish at X = 0. Consider the continuous linear
functional I(f) = J~f(t) dt. The only minimal element in <Cora, 1J, M, I)
is f 0== 0. Therefore <Co[0, 1J, M, I) has property SAIN and we can approxi
mate f in Cora, 1Jby aPE M which has the same norm as f and is such that
I(f) = I(P). It is noteworthy that neither M nor any of its subsets is a dense
subspace of Cora, 1J.
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